- Browse by Author
Escuela de Ciencias Agrícolas y Veterinarias
Permanent URI for this community
Browse
Browsing Escuela de Ciencias Agrícolas y Veterinarias by Author "Araya, Manuel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effects of physicochemical soil properties of five agricultural soils on herbicide soil adsorption and leaching(2011) Alister, Claudio; Araya, Manuel; Kogan, MarceloOnce pesticides reach the soil, there are several factors that affect their soil behavior. To identify the principal soil and herbicide properties that control their adsorption and leaching, a study of five Chilean agricultural and forest soils was performed. Simazine, diuron, terbuthylazine and MCPA were applied to the top of 45-cm tall by 12-cm diameter disturbed soil columns, filled with either an Andisol, Ultisol, Entisol or one of two Inceptisol soils. After herbicide applications, each lysimeter received 24 mm of simulated rain every 24 hours for five days. Once water percolation stopped, the lysimeters were divided into five sections and herbicide concentrations were quantified using High Pressure Liquid Chromatography. Relationships between soil physicochemical properties, herbicide sorption (adsorption and desorption) and herbicide leaching were determined. All herbicides exhibited the least depth reached from the Andisol soil (10 cm) and the highest from the Ultisol soil (45 cm). The principal soil property that affected herbicide adsorption was the soil organic carbon content, specifically the fulvic acid-humins fraction. Soil leaching was related to the inverse of soil adsorption (1/Kd), cation exchange capacity, humic substances content and herbicide pKa. These results suggest that it is possible to develop simple quantitative models to predict the soil-leaching properties of pesticides.Item Water and sediment dynamics of penoxsulam and molinate in paddy fields: field and lysimeter studies(2011-07-15) Kogan, Marcelo; Araya, Manuel; Alister, ClaudioBACKGROUND: In Chile, rice is cultivated under water-seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non-flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment